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SUMMARY

Results are described from a combined numerical and laboratory model study of the turbulent flow in a true
3D blade passage of a Francis hydro-turbine. The large eddy simulation (LES) is applied to investigate the
intrinsic features and the spatial and temporal variations of the flow structures in the blade passage with
strong wakes in inflow sweeping and the turbulence-induced blade vibration. The flow passes through the
vibrating boundaries. Therefore, the system under consideration is in a dynamic fluid–structure interaction
(FSI). In the simulation, one-coefficient dynamic sub-grid scale (SGS) model is incorporated in LES with
Reynolds number 148 400 to better describe the energy exchange mechanism between large and small scales
under the influences of strong geometrical curvature and vibrating boundaries. The governing equation
of the blade vibration with FSI has been established by generalized variational principle combining the
fluid and the structure. The vibration analysis is carried out by using Wilson-� method. Separate iteration
schemes are applied to solve the flow and the vibration in turn. The pressures on the wall sides of the blade
and its vibrating accelerations are simultaneously measured. The numerical results show that the temporal
and spatial distributions of turbulence in the 3D blade passage are significantly influenced by the curvature
of blade configuration, the blade vibration, and the distorted wakes generated by flow passing through
guide vanes. The influences of the vibration on the near-wall flow structures are quite remarkable. The
simulated results are favourably compared with the measurements. Copyright q 2006 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

A blade passage of a Francis hydro turbine is highly spatially skewing consisting of blades,
the top-crown, and the bottom-ring. The high-speed flow entering into the blade passage at the
entrance with an angle of attack rotates the runner of a machine unit by strong interaction, which
transfers the water energy to the blades for electricity generation. In this energy exchange process,
rapid variation of the flow pattern in the blade passage results in a complicated, non-uniform
and unsteady turbulent flow. So far, most 3D numerical simulations of the turbulent flows in the
3D blade passage have been performed based on RANS incorporated the k–� family models for
engineering purpose [1, 2]. These studies have not investigated the turbulent mechanisms and the
spatial and temporal distributions of turbulent flow in a strong 3D blade passage. Though a few
direct numerical simulation (DNS) studies based on the linear blade cascade simplifications [3–6]
have been recently conducted to investigate the turbulent flows in the blade passage for a low-
pressure turbine (LPT), knowledge on flows in a true Francis turbine is still lacking and substantial
research is required. In principle, DNS is the most powerful tool to study the turbulent flows
[7], however, the huge requirement for computing resources for simulating a strong 3D flow with
a high Reynolds number limits its application in many engineering and industrial flows. Recent
study of Rodi [6] shows that LES incorporated with a dynamical sub-grid scale (SGS) model,
whose computing cost is much lower than DNS, can obtain comparably good results as DNS for
many engineering and industrial problems. Therefore, LES is adopted in this study to fulfil the
simulation of the complex turbulent flow in Francis blade passage.

In the past decade, LES has been widely used and well developed into a good tool for simulating
turbulent flow in complex geometrical passage. Incorporating some computing techniques, such as
body-fitted curvilinear, unstructured grid and low-order dissipation as well as non-energy conserv-
ing discretization, LES has been successfully used to solve problems [8–10] and to simulate many
turbulent flows with some complex geometry [11–15]. However, the successful application of LES
to the very complex practical turbulent flows is still lacking and remains as a challenging task to
researchers. For example, to our knowledge, there have not been any reports of numerical simula-
tions using LES in a true 3D Francis hydro-turbine passage with FSI. On one hand, the generation
of high-quality body-fitted curvilinear meshes even in simple geometries may require proper grid
embedding/multi-domain techniques, thus significantly increasing the cost of the computations
[16]. On the other hand, the use of unstructured grids for simplifying grid generation has a nega-
tive impact on the stability and convergence of the algorithms for a complex geometry, consequently
largely increasing the numbers of operations per node. Furthermore, the application of moving
and/or deforming boundaries that are usually encountered in engineering problems and solved by
using ALE [17–19] to treat the change of meshes, results in additional computational effort. The
flow-induced vibration [20, 21], treated as vibrating boundaries in this study, is very difficult to
deal with in FSI system while computational fluid dynamics (CFD) plays an important role in the
progress. This study, therefore, is motivated by exploring a more practical methodology that can bet-
ter perform CFD task for a complex geometry (e.g. 3D blade passage of Francis turbine) with FSI.

The focus of this paper is on simulating the turbulent flow in a strong 3D blade passage of
Francis turbine. Strongly distorted wakes caused by guide vanes and flow-induced vibrations of
the blade are taken into account under dynamical FSI by combining LES and Wilson-� method
[22] based on the finite element method (FEM). In LES, a dynamic SGS model is applied to
better simulate energy exchange mechanisms between the large and small scales due to strong
3D geometrical curvature when the blades are vibrating. To validate the model developed here
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a laboratory experiment is conducted. The pressures on both sides of the vibrating blade and
its vibrating accelerations were simultaneously measured using LL-072-25A pressure transducers
manufactured by Kulite Inc. of U.S.A. and DH201 accelerators made by DonghuaTest Inc. of
China, respectively. The flow simulations with FSI are favourably compared with the experiments,
though there exists a difference for some details of the history.

2. NUMERICAL MODEL

2.1. Problem descriptions

The object under consideration is a true model Francis turbine of type A55x having a runner of
450mm diameter with 10 blades. To identify the intrinsic turbulence due to the geometrical shape
of the strong 3D blade passage and to focus the study on the influences of the vibration on the
flow the rotation of the unit is not considered at this stage. Upstream wakes that traverse the inlet
of the passage are produced by the moving guide vanes, by which the direction of the coming
flow is adjusted. The incident angle of the main flow and the velocity at the inlet of the passage
are controlled with the opening of the guide vanes. For the present study, the opening of the guide
vanes is 22 mm, the incident angle of the main flow is 38.7◦ and the mean velocity of coming
flow based on the inlet surface of the passage is Uref = 1 m/s (referred to as reference velocity).
The Cartesian system x1-, x2- and x3-axis refer to the axial, tangential and span-wise directions,
respectively (see Figure 1). The short and long edges of the blade along the span-wise direction,
referred as leading and trailing edges, are L1 = 166 mm and L2 = 281 mm. The crossing lines
with the top-crown and the bottom-ring are L3 = 130mm and L4 = 197mm, and the chord length
L = 157.3 mm. The pitches of the blades are S1 = 69 mm (at the top) and S2 = 102 mm (at the
bottom) at the location of the inlet. The relative height of the blade passage is x3/L = 2.85, and
the mean blade pitch at the inlet x2/L = 0.543. The Reynolds number is Re=UrefL/� = 148 400
(� is kinetic viscosity of water at temperature of 18◦C). Due to the periodical symmetry and for
the consideration of computational cost, only one blade passage is considered in this paper. The
computational domain with inflow and outflow regions is shown in Figure 1.
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Figure 1. Blade passage configuration and computational domain.
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2.2. Grid generation

The objective of this paper is to examine the build-up turbulence features in a strong 3D blade
passage and to investigate the spatial and temporal natures of the vortex structures due to the
guide vanes induced wakes and the vibrating blades. For such complicated configuration of the
computational domain, non-uniform and non-structured meshes of both H- and T-type cells are
used with refinement in near wall regions for accurately representing the small-scale structures
and ensuring simulation accuracy. Based on flow the Reynolds number is investigated, the first
cell size near the walls of the blade is determined on the principle [23] that it should be generally
less than c(�x1 �x2 �x3)1/3, where c is taken as 0.1 for the mesh under consideration. The
distances (in pitch-wise direction) of the first grid points away from the walls are 0.1 mm for
the suction side and 0.08mm for the pressure side, respectively. This is equivalent to that the
dimensionless wall distance y+ is less than 3 wall units in pitch-wise direction for Re= 148 400.
The sizes of the grid cells are from 0.7 to 1.4 mm, corresponding to the dimensionless sizes of
the cells being 13–66 wall units. Consequently, the total number of the grid points within the
blade passage domain is about 200× 140× 105(L2 × L4 × S2), i.e. approximately 3.0 million,
in which the grid along pitch-wise direction is gradually refined towards the blades. The grid
points in the regions of the inflow and outflow become gradually coarser with the number of the
points being about 1.2 million. The total grid points are 4.2 million in the computational domain
(see Figure 1).

2.3. Governing equations

The governing equations of the incompressible viscous flow in a Francis hydro-turbine passage
are operated by a Gaussian filter to separate the large scale from the small-scale eddies and can
be written as

�u j

�x j
= 0 (1)

�ui
�t

+ �
�x j

(uiu j ) =−�P
�xi

− ��i j
�x j

+ �
�

�x j

(
�ui
�x j

)
− 2��i3kuk (2)

in which �i j = uiu j − uiu j is the SGS stresses of the effect from the small scales, ui the filtered
velocity in i direction, P = p − �2r2/2 and p the pressure (divided by the fluid mass density),
� the kinetic viscosity, � the angular velocity which rotates around the x3-axis, r the rotating
radius with respect to the x3-axis, �i3k a circular replacement tensor. Note that the presence of
the curvature varying blade walls, particularly when they are vibrating, affects significantly the
physics of the SGSs stresses and inhibits greatly the natural growth of the small scale structures.
Therefore, the energy exchange mechanisms between the resolved and unresolved structures may
be significantly altered compared to those that flow in flat and straight channels. Thus, to bet-
ter simulate such energy exchange mechanisms, it is essential to update the model coefficients
during the computation instead of using constants, as the classical Smagorinsky’s model does.
Furthermore, a one-coefficient dynamic SGS model [24] is adopted in this study to improve the
energy transfer relationship between the large and small scales in the true hydro-turbine blade pas-
sage. For convenience and completeness, we give a brief and simple description to one-coefficient
dynamic SGS model. We first consider an eddy-viscosity model to parameterize both subgrid
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and subtest stresses, namely

�i j =−2cd�i j (3)

Ti j =−2cd�i j (4)

in which Ti j = uiu j − uiu j is the subtest stresses, which are obtained by applying a test filter G

with a characteristic width �= 2�, to the Navier–Stokes equations. The dynamic adjustment of
the model coefficients is based on the following identity:

Li j = uiu j − uiu j ≡ Ti j − �i j (5)

in which �i j is SGS stresses based on the test filter G to the Navier–Stokes equations. An error
function is introduced as

ei j = Li j − Ti j + �i j (6)

The least-squares method is used to minimize the error and the dynamic model coefficient is
obtained as

cd = −1

2

〈(uiu j − uiu j )(�i j − �i j )〉
〈(�i j − �i j )(�i j − �i j )〉

(7)

Thus, the dynamic model used in this study is stated as

�i j − �i j
3

�kk =−2�T Si j =−2cd�
2
(2Si j Si j )

1/2Si j (8)

in which �i j is Kronecker’s delta and bar(s) over the variables represent(s) filtered.

2.4. Boundary conditions

The most distinctive geometry feature of a Francis hydro-turbine is the repetitiveness of blades
in pitch-wise direction. For the Francis turbine blade passage studied in this paper, 10 blades are
periodically located along the pitch-wise direction with the circumference angle of a blade of 36◦.
The pitch-to-chord ratio is 0.544, which is significantly larger than the length scale of the turbulent
eddies inside blade boundary layer, and bigger than the guide vanes induced wakes scale. The
periodic boundary treatment is innocuous in the artifice periodicity when the boundary surface
pairs of ABCDD′C′B′A′ at the inflow zone and of EFF′E′ at the outflow zone (see Figure 1) are
treated as statistically and instantaneously periodic boundary conditions, although the turbulent
flow does not satisfy periodicity. This is well suitable for an artifice using a blade passage [3–6].

No-slip conditions are imposed on the rigid boundaries, i.e. D′C′B′A′A′′B′′C′′D′′ at the inflow
zone, FEE′′F′′, D′′′E′′ED, and the surrounding surface of the guide vane. The velocity on the
surface of the inflow (AA′A′′A′′′) is specified as a steady incoming flow condition. An initial
turbulent kinetic energy (TKE) is added based on the measured fluctuating velocity in the water
supply pipe. On the outlet surface of the outflow region (FF′F′′) Neumann condition, �	/�n = 0,
is applied, where 	 is a flow variable and n an outward normal of the surface.

One of the interests of this paper is to consider the influences of the vibrating blades on the
turbulent flow in the blade passage. To this end, the blade is treated as an elastic structure, clamped
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at two ends with the top-crown and the bottom-ring. The blade vibrates under excitation of the
turbulent flow. Thus, on the pressure and suction sides of the blade, the interaction conditions for
the motion between the flow and the blade vibration can be written as

ufsi − v̇fsi = 0 (9)

in which v̇i is the vibration velocity of the blades, the dot over the variable represents the derivative
with respect to time, the superscript fs indicates the interface between the fluid and the structure
(blade). After implementing a lengthy operation based on the generalized variational principle of
the FSI system, the dynamic coupling conditions between the flow and the structure, as a FEM
formulation, are obtained as

⎡
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⎟⎟⎠ (10)

or, as a compact matrix notation

Mv̈ + Cv̇ + Kv=R (11)

in which the bold letters represent matrices; m is the mass matrix of the structure; c the damping
matrix; k the stiffness matrix; v, v̇ and v̈ the vibrating displacement, velocity and acceleration
vectors of the structure, respectively; u the flow velocity vector (equal to vibrating velocity on the
sides of the blade); p the pressure vector; q the viscous matrix of the flow on the blade sides; g
the allocated matrix of the pressure on the blade sides; the superscripts ‘1’ and ‘2’ indicate the
pressure and suction sides of the blade, respectively; and ‘0’ the interior domain of the structure;
for instance, u1( = v̇1) represents the velocity vector formed with the node velocity on the pressure
side. The derivation of Equation (10) is presented in Appendix A and solved by Wilson-� method.

3. NUMERICAL METHODS

The problem under consideration includes two phases of the flow and the vibration; thus, it is
necessary to simply describe the numerical method for each phase.

3.1. LES of fluid

The finite volume method (FVM) with hybrid discretization schemes of the central difference and
the second-order-upwind is employed for the flow with the diffusion and convection terms. Third-
order Runge–Kutta algorithm is introduced for time integration in conjunction with a classical
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Figure 2. Nodes or points on an interfaced element surface.

correction method at each sub-step. The continuity equation and the pressure gradient terms in
the momentum equations are implicitly treated, while the convective and diffusive terms are
explicitly treated. The automatic satisfaction of the continuity equation within the computational
domain is realized with the SIMPLER algorithm [25]. A strategy of varying the time interval is
adopted during the computation to achieve better convergence and accuracy. The maximum time
step is limited approximately less than 2.5× 10−3T (corresponding to �t�0.0004 s), in which
T = L/Uref = 0.157 s is the time of flow passing the blade passage from the inlet to the outlet.
The simulating history duration is 1.57 s (approximately 10T ), while the sampling data of the
grid turbulence for statistical analysis starts from 0.47 s. Due to using a dynamic SGS model and
applying separating iterations for fluid and vibration, respectively, the computational cost is quite
high. The typical computational time was successive around 30 days for a simulation time of 1.57s
on a super-workstation with two Intel CPUs of X3.0G.

3.2. FEM of vibration

The blade is discretized with 3500 iso-parametric elements attached with 20 nodes and 6 surfaces
for conveniently implementing information exchange between flow and vibration. Figure 2 shows
the locations of element nodes and grid points on an interfaced element surface. The displacement
and velocity at an arbitrary position on the interface are stated as

vfsi (x, y, z, t) =
8∑

�=1
N�(x, y, z)v

fs
�i (t) (12)

v̇fsi (x, y, z, t) = ufsi (x, y, z, t) =
8∑

�=1
N�(x, y, z)v̇

fs
�i (t) (13)

in which N� is the interpolation function of the displacement and velocity, � the nodal order on an
interfaced element surface, vfs�i and v̇fs�i the displacement and velocity at the �th node. Therefore,
the velocities at the gird points on the interface are obtained from Equation (13) and are used as
vibrating boundary conditions for the simulation of the fluid phase.

The direct integral method based on Wilson-� scheme [22] is used to solve the vibrating equation
of the blade. The discretization schemes on the vibrating velocity and acceleration can be implicitly
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expressed as

v̇t+��t = 3

��t
(vt+��t − vt ) − 2v̇t − ��t

2
v̈t (14)

v̈t+��t = 3

�2�t2
(vt+��t − vt ) − 6

��t
v̇t − 2v̈t (15)

in which � is a parameter related to the numerical stability and taken as 1.4 in this paper, and
�t the time interval, taken as the same as that of fluid phase. The balance equation described by
Equation (11) is written as

Mv̈t+��t + Cv̇t+��t + Kvt+��t = R̂t+��t (16)

in which R̂t+��t =Rt +�(Rt+�t −Rt ). vt+��t is then obtained by substituting Equations (14) and
(15) into Equation (16).

3.3. Numerical iteration

The most suitable methodology for solving the turbulent flow with FSI is probably the direct
computing technique based on Equation (A10) in Appendix A, in which the fluid variables (velocity
and pressure) and the structure variable (displacement) are simultaneously solved. However, to
better utilize the existing computing resources, the iterative method for FSI computation [26] is
used to separately solve fluid and structural phases sequentially, albeit more CPU time might be
required for repeating some performances of the sub-iterations. The solution iteration sketch of
the whole system is shown in Figure 3.

4. NUMERICAL SIMULATION RESULTS

4.1. Pressure characteristics

Figure 4 demonstrates a typical detailed time sequence pressure distributions on both the pressure
and suction sides. To investigate the spatial variation of the pressure, we calculated the time-
averaged static wall pressure coefficient, Cpw = 2(p − pout)/U

2
ref on both suction and pressure
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Figure 4. Cpw distributions on pressure side (top) and suction side (bottom).

sides of the blade, as shown in Figure 5, where pout the mean static pressure in the trailing edge
of the blade. For the sake of clarity, only pressure coefficients at three locations, namely top
crown (TC), mid position (MP) and bottom ring (BR), are plotted in Figure 5. It is seen from the
figure that on the pressure side (designated as PS, solid lines with symbols) of the blade there is
a short region of velocity deceleration (corresponding to the increase of pressure) taking place at
the leading zone of the blade. Then the velocity starts to accelerate towards the trailing edge at
locations of MP and BR. While at location of TC, the situation is different. The pressure remains
roughly constant between x/L = 0.3 and 0.8 after a short acceleration starts at x/L = 0.1. Then a
fast acceleration takes place towards the trailing edge of the blade. Figure 5 also demonstrates that
at the position of x/L = 0.1, the flow has an almost direct impact on the blade, which results in a
peak pressure and a low wall-shear stress at three locations of pressure side. Such a low wall-shear
stress produces the lowest value of time-averaged skin frictional coefficient (SFC) on the pressure
side shown in Figure 6. The distribution of the pressure coefficient on the suction side is different
and more complicated than that in the pressure side. An initial drop of the pressure coefficient
(corresponding to velocity acceleration) is seen to occur at the leading zone of the blade for three
locations selected. Then there is a rapid increase of pressure coefficient (velocity deceleration)
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Figure 5. Static pressure coefficient on two wall sides of blade. Keys: PS, pressure side; SS, suction side;
TC, crossing line of blade with top crown; MP, mid position line of blade in stream-wise; BR, crossing

line of blade with bottom ring; x/L , relative position along each line.

Figure 6. Skin frictional coefficient on two sides of blade. Legends are the same as in Figure 5.

followed by a gradual and then rapid decrease of pressure towards the trailing edge of the blade at
locations of TC and MP. A strong vortex is generated at x/L = 0.1 which is close to the suction
side. As a result, SFC (C f ) increases at this zone, as demonstrated in Figure 6. The pressure
coefficient at BR remains roughly constant throughout the passage though there exists a slight
decrease at the entrance. It may be worthy of pointing out that the simulated pressure distribution
features in this paper are quite different from those in the previous studies [3–6]. Such difference
may be mainly ascribed to the different flow configuration treated with the true complex strong
3D turbine passage investigated here.

4.2. Turbulence characteristics

Figure 7 is the instantaneous distributions of the turbulent viscosity at t/T = 7.01 and 9.38 for
different locations of the passage. It is seen that the turbulent viscosity increases rapidly as the
flow passes through the guide vane. The wakes develop towards the downstream and enter the
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Figure 7. Instantaneous zebras of turbulent viscosity at t/T = 7.01 (left column) and 9.38 (right column).

blade passage. A strong turbulence is stirred at the inlet region of the blade passage, particularly
at the region close to the suction side. The turbulence is gradually strengthened as the flow
approaches the passage bottom. Due to the strong curvature of the blade geometry, the whole
passage region is almost filled with the strong turbulence streaks in the region below z/L = 0.5.
Figure 7 also shows that a strong eddy forms at the inlet region and migrates streamwise on the
suction side.

The eddy characteristics are further demonstrated in Figures 8 and 9 of the instantaneous iso-
surfaces of vorticity at various time in streamwise and spanwise, respectively. Figure 8 shows the
performance of the axial (streamwise) vortex in the blade passage. It is seen that the quantity of
these swirls rarefies at the top region of the passage. The distributing law of these swirls looks
like a string of green bananas growing in a tree. They are gradually elongated with time and the
backbone is finally broken, which makes the bananas fall scatter shortly. As a result, the flow
becomes more unstable. In Figure 9, a strong tornado, formed due to influx of two wakes shown in
Figure 7 at the leading zones of blade passage, is clearly shown in the leading region near suction
side and along the blade height. This large vortex rotates in clockwise direction, and gradually
breaks into smaller eddies as it moves into the bottom region of the passage. Consequently, the
flow becomes unstable.
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Figure 8. Instantaneous iso-surfaces of stream-wise vorticity at t/T = 7.01, 7.8, 8.59 and 9.38.
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Figure 9. Instantaneous iso-surfaces of span-wise vorticity at t/T = 7.01, 7.8, 8.59 and 9.38.

4.3. Flow structures near walls

To investigate the features of the flow structures on vibration walls, two surfaces near the pressure
and suction sides are selected, respectively, by rotation of 0.4◦, approximately 1.6 mm (about
y+ = 70) away from the walls (maximum vibration magnitude of the blade is about 1.6 mm for
this case) at the crossing edge with the bottom ring. These two surfaces are referred to as S2 and
S4. Figures 10 and 11 are the typical example of the axial and span-wise vortexes on S2 and S4,
respectively.

Figure 10(a) shows an order distribution of longitudinal vortex on S2, especially at the bottom
region (near BR). At this region, the vibration is weaker and the curvature change of the blade is
more uniform. Therefore, the vortexes generated are comparatively longitudinal, which are similar
to those found in [3]. The influence of the vibration on the flow structures is evidenced by looking
at the mid-top region of S2, where the longitudinal vortexes become shorter and much scattered.
The distributions of the span-wise vortexes on S2 seem to be more complicated (see Figure 11(a)).
In general, a blurry order of the vortexes takes place due to non-uniform flow direction adjustment
along the blade height, which coincides with the flow nature in the blade passage of a Francis
turbine. The distributions of the vortexes on the suction side (S4) shown in Figures 10(b) and
11(b) are very different due to a protruding blade wall surface. In general, the simulation results
reveal that the effects of the blade vibration on the near wall flow structure on S4 are smaller than
that on S2.
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Figure 10. Axial vorticity distributions near pressure and suction sides (S2 and S4 surfaces) at
t/T = 7.01 and 9.38: (a) pressure side; and (b) suction side.
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(a) (b) 

Figure 11. Span-wise vorticity distributions near pressure and suction sides (S2 and S4 surfaces) at
t/T = 7.01 and 9.38: (a) pressure side; and (b) suction side.

Figure 12 is the distribution of the turbulent spots on the surface of y+ ≈ 6 (approximately
0.2 mm) away from the blade wall at t/T = 5.044. It is seen that the turbulent spots are mixed
with some regulative contours. This phenomenon indicates that the flow is in a transitional state.
On the near-pressure side surface, the turbulent spots distribute mainly in a belt form from the
top-left to the bottom-right zones, while a scatter U-shaped type of the turbulent spots is found
on the near-suction side surface. Such distributions are quite different in rigid walls as found by
Zhang et al. [27], which reflects the different energy-transfer mechanism near the walls due to the
vibration.
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(a) (b)

Figure 12. Distributions of turbulent spots at t/T = 5.044: (a) on y+ ≈ 6 surface of pressure side;
and (b) on y+ ≈ 6 surface of suction side.

Figure 13. Main components of test model: (a) model runner; and (b) model unit.

5. EXPERIMENTS AND COMPARISON

5.1. Experimental rigs

The turbine used for the experiments is a model of a Francis turbine, A55x. The model runner
diameter is 450mm, with 10 blades and, 23 guide vanes and 23 stay vanes. The model material is
hard polyglass with Young’s modulus of 2500 MPa, Poisson ratio of 0.384, and the mass density
of 1280 kg/m3. The maximum net working water head in the experiments is 3.28m. The rotation
velocity varies from zero to 210 r/min according to the needs. Figure 13 is the photo of the
experimental facility.

Five pressure sensors, LL-072-25A, were mounted on both the pressure side (numbered 47–51)
and the suction side (numbered 52–56) of a blade to record the turbulent pressure signal. The
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Figure 14. Transducer positions mounted on blade.

locations of the sensors are shown in Figure 14 in which the pressure sensors were arranged in a
way that they (from 50(55) to 48(53) and from 51(56) to 49(54)) were roughly placed along the
stream-wise direction. Three acceleration transducers, numbered 659, 692 and 696, were installed
inside another blade (unfortunately transducer 696 did not work during the experiments). The
sampling resolutions are 2.5, 5, 7.5 and 10 kHz for flow, and 0.5, 1, 2.5 and 5 kHz for vibration,
respectively.

5.2. Comparison

The experimental parameters are the same as that of the numerical example, namely the working
net water head is 3.28 m, the opening of the guide vanes is 22 mm, and the averaged velocity on
the inlet section of the blade passage is 1 m/s. The data used in present study are of sampling
resolutions of 2.5 kHz.

Figure 15 is the comparison of the simulated (solid squares) and measured (solid triangles)
time-averaged total pressures (static plus dynamic pressures) at the specified points. In general,
the simulated time-averaged pressures agree well with the measurements with the maximum
relative error being about 9% (at suction side point 54). The results show that the pressure on
the pressure side decreases rapidly along the stream-wise direction (from 50 to 48 and from 51
to 49), while on the suction side, the pressure drop becomes more gradual (see dotted arrow
lines in Figure 15). Such features of the pressure distribution are consistent with those shown
in Figures 5 and 6.

Figure 16 is the simulated (solid line) and measured (dotted line) time-dependent pressures at
the measuremental points in which the signals were treated with five wavelet decompositions of
the DB4 wavelet function in order to obtain smooth curves for the purpose of comparison. The
figure demonstrates much information of flow. Let us first look at the pressure histories at the upper
region of the blade (i.e. points 47, 50 and 52, 55), in which the thickness of the blade is bigger and
the vibration is naturally weaker. It is seen that (i) there are only several peaks and troughs over
the recorded time interval; and (ii) the variation range of the pressure is relatively small compared
to that in the lower zone of the blade. This implies that the flow turbulence is weaker at the upper
region and the influence of the structure vibration on the near-wall flow is weaker. The situation
of the pressure history at the lower region of the blade is contrary. The thinner blade results in a
significant vibration, which makes the pressure history become more complicated. It is seen that
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Figure 15. Comparisons of computational and measured pressures: (a) on
pressure side; and (b) on suction side.

many pressure peaks and troughs take place and the pressure variation range is much wider. Such
features may be ascribed to the presence of the dominant small-scale components of the turbulent
flow in this region.

Figure 17 is a tendency comparison of the computed (solid line) and measured (dotted line)
accelerations of the blade. In general, the features of the simulated and measured acceleration
history are similar to that of the pressure histories. The results show that the acceleration histories
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Figure 16. History comparisons of total pressure at measured points on two sides.
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Figure 17. Vibration accelerations of blade at specified points.

at two points are quite different in details. The vibration at the midst of the blade (Accelerator-692)
is faster than that at the bottom of the blade (Accelerator-659). This implies that the dominant
frequencies of governing the vibration features of the blade have the spatial variation characteristics.
The vibration is strongly performed in a localization flutters [20].

6. CONCLUSIONS

LES has been performed with a one-coefficient dynamic SGS model and consideration of a
dynamically FSI to investigate the turbulent flow with high Reynolds number in a strong 3D
complex passage of a true Francis turbine. The results show that the influences of FSI on the
distribution and development of the near-wall flow structures are strong. The energy-transfer
mechanism between the large and small scales is disturbed by the vibration. The temporal and
spatial distribution of the turbulent flow in the blade passage is non-uniform. For example, the
TKE in the top region of the passage is very small with a value of about 1.5% of the mean flow,
while at the bottom and trailing regions, the TKE is significantly enhanced and reaches about 50%
near the suction side. Such feature may be ascribed to the stirring of the blade vibration and strong
curvature variation of the blade wall surfaces.

Results also demonstrate that large attack angle due to small opening of the guide vane causes
strong wakes at the inlet. The wakes are the main reason for forming the primary vortex in the
leading region of the passage. As the primary vortex evolves along the suction side near the
blade, it is broken into smaller vortex due to strong curvature and the vibration of the blade,
which causes the continuous elongation of the tube vortex and rapidly breaks down into many tiny
vortexes.

APPENDIX A

The computational sub-domain concerning only blade passage consisting of two blades and fluid
between these blades is shown in Figure A1, in which the fluid domain, �f, is surrounded by
surfaces �f = A1+ A2+ A3+ A4+ A5+ A6, and the structural domain, �s, is formed by surfaces
�s = A3 + A4 + A7 + A8.
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Figure A1. Computational domain of blade passage.

Neglecting the viscous damping of the structure material, then the governing equations for the
blade are stated as


si j, j + F s
i − �sv̈i = 0 in �s (A1a)

�si j = 1
2 (vi, j + v j,i ) in �s (A1b)


si j = ��skk�i j + 2G�si j in �s (A1c)

vi = 0 on surfaces A7 and A8 (A2)

For incompressible viscous fluid, the governing equations are written as

�ui
�t

+ u jui, j − 
fi j, j − F f
i = 0 in �f (A3a)

uk,k = 0 in �f (A3b)


fi j =−p�i j + �(ui, j + u j,i ) =−p�i j + 2�Si j in �f (A3c)

ui = u0i on surfaces A1 and A2 (A4)

At the interfaces between the fluid and the structure, the compatible coupling conditions are

ufsi − v̇fsi = 0 on surfaces A3–A6 (A5a)


fi j n
f
j + 
si j n

s
j = 0 on surfaces A3–A6 (A5b)

where 
si j is the stress tensor of the structure, �si j the strain tensor, F s
i the body forces acting on

the structure, �s the mass density of the structural material, n j the unit outer normal direction on
the interface, 
fi j the viscous stress tenors of the fluid, Si j the strain rate tensor, for the rest of the
variables please refer to Section 2.

According to the maximum dissipative power principle for fluid flow on the Garlerkin method
[28] and application of 4 types of Lagrangian multipliers, , �i , �i and �i which correspond to
restricted conditions of Equations (A3b), (A2), (A4) and (A5a), a power functional of the FSI
system is constructed and its variation with respect to the basic variables (ui , p, v̇i ) and the
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Lagrangian multipliers is obtained as

��FSI =
∫∫∫

�f
[u̇i + u jui, j − F f

i − �(ui, j + u j,i ), j − ,i ]�ui d�

+
∫∫∫

�f
ui,i� d� +

∫∫∫
�s

(�sv̈i − 
si j, j − �sF s
i )�v̇i d�

+
∫∫

A7+A8
[��i v̇i + (�i + 
si j n

s
j )�v̇i ] dA

+
∫∫

A1+A2
[��i (u

f
i − u0i ) + [�i + �(ui, j + u j,i )n

f
j + �i j n

f
j ]�ui ] dA

+
∫∫

A3+A4+A5+A6
(
si j n

s
j − �i )�v̇fsi dA

+
∫∫

A3+A4+A5+A6
[�(ufsi, j + ufsj,i )n

f
j + �i j n

f
j + �i ]�ufsi dA

+
∫∫

A3+A4+A5+A6
��i (u

fs
i − v̇fsi ) dA (A6)

The Lagrangian multipliers, which meet the variational stationary condition, ��FSI = 0, are
solved as

 =−p (A7a)

�i =−
si j n
s
j (A7b)

�i = −
fi j n
f
j (A7c)

�i = (
si j n
s
j − 
fi j n

f
j )/2 (A7d)

It is easy to get the foregoing governing equations of both the structure and the fluid by Equation
(A6) and the Lagrangian multipliers solved. Thus, the functional of the FSI system is

�FSI = �̂f
0 + �̂s

0 + �f
1 + �s

1 + �fs (A8a)

in which,

��̂f
0 =

∫∫∫
�f

(u̇i + u jui, j )�ui d� (A8b)

��̂s
0 = 1

2

∫∫∫
�s


si j�v̇i, j d�+
∫∫∫

�s
�sv̈i�v̇i d� (A8c)

�f
1 = −

∫∫∫
�f

[
F f
i ui − 1

2
�(ui, j+u j,i )ui, j+pui,i

]
d�−

∫∫
A1+A2


fi j n
f
j (ui−u0i ) dA (A8d)
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�s
1 =−

∫∫∫
�s

�sF s
i v̇i d� −

∫∫
A7+A8


si j n
s
j v̇i dA (A8e)

�fs =
∫∫

A3+A4+A5+A6

1

2
(
si j n

s
j − 
fi j n

f
j )(u

fs
i − v̇fsi ) dA (A8f)

where Equations (A8b) and (A8c) appear in the variational form (with symbol ‘�’). It is easy to
prove that the solution, [ui , p, v̇i ], which satisfies the functional equations (A8), is that of the FSI
system in this study.

To get a discretization scheme of the FEM for the structure, interpolation functions are applied
to Equations (A8), namely, the displacement (for structure) and the velocity and the pressure
(for fluid) at arbitrary point in an element (for fluid and structure) are expressed with the values
at the nodes of this element

vei (x, y, x, t) = N s
�(x, y, x)v

e
�i (t) (A9a)

uei (x, y, x, t) = N f
�(x, y, x)u

e
�i (t) (A9b)

pe(x, y, x, t) = N p
� (x, y, x)pe�(t) (A9c)

in which, � indicates the nodal order of element, N s
� is the displacement interpolation function for

the structure, N f
� and N p

� , respectively, the velocity and pressure interpolation functions for the
fluid. Introducing Equation (A9) into Equation (A8) and making a lengthy variational operation
with respect to the variables [ui , p, v̇i ], the fully coupled FEM equation for the FSI system are
obtained as (for eth element for structural- or fluid-domain)

mf
eu̇e + cfeue + gfepe + qfse v̇e + kfeve + rfe = 0 (A10a)

ms
ev̈

s
e + kseve + qfse ue + gsepe + rse = 0 (A10b)

gfeue + gsev̇e + rpe = 0 (A10c)

in which, ve,ue and pe are the nodal vectors of the structural displacement, the flow velocity and
the pressure. The rest of the symbols are

mf
e =

∫∫∫
�f

�

N fNf d�, ms
e =

∫∫∫
�s

�s
�

N sNs d�

cfe =
∫∫∫

�f
[�

N fNfue�Nf − 2�
�

N fJ
�

J f] d� + 4�
∫∫

A1+A2

�

N fn
�

J Nf dA

− 2�
∫∫

A3+A4+A5+A6

�

N fn
�

J Nf dA

qfse = �
∫∫

A3+A4+A5+A6

�

N fn
�

J Ns dA

gfe =
∫∫∫

�f

�

N f
�

�Np d� −
∫∫

A1+A2

�

N fndNp dA
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+ 1

2

∫∫
A3+A4+A5+A6

�

N fn�Np dA

rfe =
∫∫∫

�f

�

N fNfFf
e d� − 2�

∫∫
A1+A2

�

N fn
�

J Nfu0e dA

gse =−1

2

∫∫
A3+A4+A5+A6

�

N sn�Np dA, rse = −
∫∫∫

�s
�s

�

N sNsFs
e d�

rpe =
∫∫

A1+A2

�

N fn�Npu0e dA

kfe = 1

2

∫∫
A3+A4+A5+A6

�

N snDCNf dA

kse =
∫∫∫

�s

�

N sJDCNs d� −
∫∫

A7+A8

�

N snDCNs dA − 1

2

∫∫
A3+A4+A5+A6

�

N snDCNf dA

C=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
�x1

0 0
1

2

�
�x2

0
1

2

�
�x3

0
�

�x2
0

1

2

�
�x1

1

2

�
�x3

0

0 0
�

�x3
0

1

2

�
�x2

1

2

�
�x1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

J=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
�x1

0 0
�

�x2
0

�
�x3

0
�

�x2
0

�
�x1

�
�x3

0

0 0
�

�x3
0

�
�x2

�
�x1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

n=

⎡
⎢⎢⎣
n1 0 0 n2 0 n3

0 n2 0 n1 n3 0

0 0 n3 0 n2 n1

⎤
⎥⎥⎦ , d= [1 1 1 0 0 0]T, � = [�/�x1 �/�x2 �/�x3]

D is the elastic matrix of the structure, N the interpolation function matrix,
�

N the transformation of

matrix N, and
�

J the transformation of matrix J. Thus, Equation (13) can be obtained by equating
Equations (A10) into the global equation and neglecting the body force of the structure (i.e. rs = 0).
(Note: A5 and A6 are considered as rigid surfaces in the present study.)
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NOMENCLATURE

A area
Cpw pressure coefficient on wall
G material constant of blade
L length of geometry size
N� interpolating function
T defined as L/Uref
Uref mean flow velocity at the inlet
Ti j subtest stresses
Si j strain for fluid
cd coefficient of the dynamical SGS model
n j unit outer normal direction
p pressure divided by the fluid mass density
pout pressure at the outlet
p filtered pressure divided by mass density
r rotating radius to x3-axes
t time
�t time interval
ui component of flow velocity
u̇i = �ui/�t
ui filtered component of flow velocity
ui test filtered component of flow velocity
vi component of displacement of vibration
v̇i component of velocity of the vibration
v̈i component of acceleration of the vibration
xi co-ordinate component of Cartesian system
x , y, z co-ordinate component of Cartesian system
y+ defined as y+ = (�y/�)

√
�w/�f

�xi space of grid pint

G test filter

� characteristic width of the test filter
� characteristic width of the filter
�f fluid domain
�s solid domain
� functional

fi j stresses in fluid

si j stresses in blade
�i3k circular replacement tensor
�i j SGS stresses
�i j SGS stresses on the test filter
�si j strain rate for solid
�i j Kronecker’s delta
� kinetic viscosity of fluid
�T eddy viscosity of fluid

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:517–541
DOI: 10.1002/fld



540 L. ZHANG, Y. GUO AND W. WANG

� rotating angular velocity
� material constant for blade
�i Lagrangian multiplier
�i Lagrangian multiplier
�i Lagrangian multiplier
 Lagrangian multiplier
�(·) variational symbol
�s liquid mass density
〈 〉 ensemble averaging operation

Matrices

M mass matrix
C damping matrix
K stiffness matrix
D elastic matrix of blade
R blade excitation vector caused by flow
v, v̇, v̈ vectors of displacement, velocity, and acceleration for the blade
u vector of velocity for the fluid

Superscripts or subscripts

f fluid
s structure (blade)
fs interface of fluid and structure
� node order of element for FEM
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